SMART GARBAGE COLLECTION SYSTEM

By:

A S Karthikeyan G Shanthini N Soundhariya T Shiyam Ganesh

Mentor:

Mrs B Sathiyavathy

JAWAHAR VIDYALAYA SENIOR SECONDARY SCHOOL ASHOK NAGAR, CHENNAI

OBJECTIVE:

To provide a sustainable CLEAN Environment by adapting the latest electronics and communication technology for Garbage Collection System.

SCOPE:

 To develop a blueprint for Smart Garbage Collection
System using the latest technology.

THE DUSTBIN:

This is a customized dustbin. It is completely made up of *Mild-steel(MS)*. This material is cost efficient.

The bin is fully closed, except an opening through which garbage will be disposed. At the top, it contains a door through which the garbage will be taken away by the trucks.

THE BRAIN:

The brain of the model consists of three main parts. They are:

- Arduino UNO microcontroller
 - GSM Module
 - Ultrasonic sensor

Arduino microcontroller: This is the most important component ,as it controls the intelligence of the smart garbage bin. It helps to monitor the level of garbage.

<u>GSM module</u>: This component sends information about the level of the dustbin to the control room.

<u>Ultrasonic sensor</u>: This component senses the level of the garbage in the dustbin by sending out ultrasonic waves at a frequency of 40,000 Hz.

LEVEL MEASURMENT:

To measure the level of the garbage , we need to detect the distance between the sensor and the garbage.

Velocity of sound = 343 m/s (at 20 degree C) =34300 cm/s1s = 10^6 mic.s (programming done in microseconds) = 34300 mic.s= 0.0343 cm/mic.s

 $V = \frac{D}{T}$ $D = V^{*}T$ $2D = 0.0343^{*}T \text{ (distance to and fro)}$ $D = (0.0343^{*}T) \text{ (V-Velocity D-Distance T-Time)}$ 2

THE COMPACTOR:

COMPACTION provides reduction of volume of garbage in the bin(to a certain extent).

- The compactor used is a manual type.
- Needs manpower for compression.

Volume Reduction and Compaction Ratio:

- Volume reduction = $((V_i V_f) / V_i)^* 100$
- Compaction ratio= V_i / V_f Where
- V_i initial volume before compaction (m^3)
- V_f -final volume after compaction (m³)

Influencing Factors:

- Composition of Garbage.
 - Paper, Plastic, food waste...
- Moisture content in Garbage

Advantages:

- More garbage can be accommodated
- Reduces spillage
- Reduce frequency of waste collections

Challenges:

- Heterogeneous composition of garbage
- Non Segregation of garbage

ADVANTAGES:

- Best Helpmate for our Environment
- Controls & Eliminates the spillage of garbage due to overflow
 - More hygienic clean Environment
 - Eliminates environment pollution
- Monitoring the Garbage Collections
- Resource Optimization
- Reduce Truck driving distance -By optimized routes
 - Time saving
 - Less fuel Consumption
 - Reduced gas emissions
 - Reduced maintenance cost

THANK YOU