

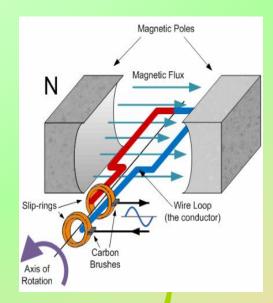
# GENERATING ELECTRICITY WITH WINDMILL ON MOVING TRAIN / CAR / BIKE

## SBOA SCHOOL & JUNIOR COLLEGE CHENNAI



#### **SYNOPSIS**

- Introduction
- Working principle
- O Background study & Proto sample
- Tryout Details (After Mentoring Session)
- Advantages & Challenges


#### INTRODUCTION

- O Wind energy is a "Renewable Energy".
- India has the largest railway network / Road transport.
- O Windmill requires 15 Km/hr speed of wind to rotate its propeller blades.
- O Trains / Automobiles are running more than 60 Km/hr / 40 Km/hr speed.



#### **WORKING PRINCIPLE**

- O Wind turbines convert the kinetic energy of the wind into Mechanical energy and then into Electrical energy.
- O While the train / Automobile is moving, the wind mill blades and in turn rotor shaft will automatically start rotating.
- O The rotor shaft is cutting the "Electro Magnetic Field" which is produced between the two magnets and producing the electricity.
- This generated electricity can be transferred through wires to function electrical equipment's such as lights, Fans and air conditioners in the train / Automobiles.





#### BACKGROUND STUDY & PROTO SAMPLE



Went to ICF & Met Mr. Malaiarasan (Sr. Engr) to check the feasibility



Went to Vestas - Udumalpet & met Mr. Ashok, Dy. Mgr. to check the feasibility

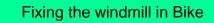


Did the model project for feedback survey @ school








## TRYOUT DETAILS

## Study Materials:

| # | Parts                                                               | Purpose                                          |  |
|---|---------------------------------------------------------------------|--------------------------------------------------|--|
| 1 | Generator, Blade & Channel<br>(Spec : 18V X 1 Amps) — Weight < 1 Kg | To Generate the current                          |  |
| 2 | Electrical wires                                                    | To conduct the current                           |  |
| 3 | LED bulbs<br>(Spec : 3 Watts (0.25 A, 12 V))                        | To check the output  To check the current output |  |
| 4 | Multi meter                                                         |                                                  |  |
| 5 | Bike                                                                | To fix & Do the try <mark>o</mark> ut            |  |



## TRYOUT DETAILS









Taking the tryout data with Multi meter

Taking the tryout with LED bulbs

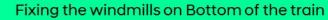




#### TRYOUT DETAILS

## Data Analysis:

| # | Generator Specification                             | Bike Speed   | Actual Current<br>Output | Can be used to glow                         |
|---|-----------------------------------------------------|--------------|--------------------------|---------------------------------------------|
| 1 | Generator, Blade & Channel<br>(Spec : 18V X 1 Amps) | 30~35 Kms/Hr | 16~17V X<br>1 Amps       | 12V X 0.25 Amps (4 LED<br>Bulbs of 3 Watts) |


#### Observations:

O In one bike, We can fix maximum 4 wind mills.



## FEASIBILITY DETAILS

#### Fixing the windmills on the train







Fixing the windmills on In between the train coaches

Fixing the windmills on Automobiles





#### **ADVANTAGES & CHALLENGES**

## <u>Advantages:</u>

- O It is Green energy
- Wind power requires "No Power"
- We can save the electricity consumption of the train / Automobiles.

### **Challenges:**

- O Wind mill blade design to be optimized to match with moving vehicles.
- O Dynamic imbalance to be considered for the moving vehicles.
- O Power can be generated only when train / Automobiles is moving
  - → Electrical backup facilities can be used to restore the current