

" Biotechnology Solution for Water Treatment/ Industrial Waste Water "

Case study of textile industry wastewater treatment using a plant microbe integrated system

> Dr. J. Hema Associate Professor Department of Biotechnology PSG College of Technology Coimbatore

The problem...

 Every single kilograms of the finished textile consumes about 100 L of water

- Wastewaters colour, total dissolved solids, toxic metals, residual chlorine, BOD/COD, etc.
 - major constraint towards the reuse of the wastewater.
- Typical treatment: primary, secondary (biological treatment) and tertiary treatment (advanced treatment-including reverse osmosis, ultra-filtration and/or nano-filtration)

The problem...

- Cost Rs. 34.08 to 73.22 per 1000 L
- Hazardous membrane rejects need specialized disposal
- Many textile units are run as small-scale units do not comply with regulations mainly because of cost
- Need for alternatives that are cost effective as well as reduce the rejects that require specialized disposal.

Key questions

- Will a plant-microbe system be able to treat the textile industry wastewater completely?
- How the proposed treatment cycles be managed?
- How does a plant microbe system compliment in the proposed treatment?
- What is the adsorption efficiency of vetiver roots for the pollutants, particularly textile dyes?

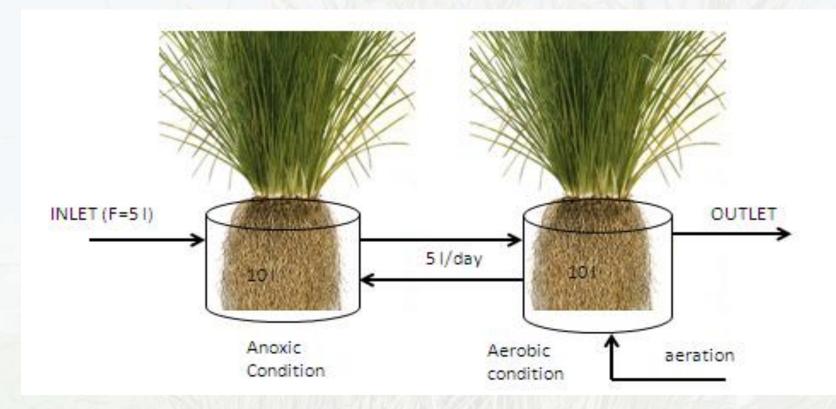
Objectives...

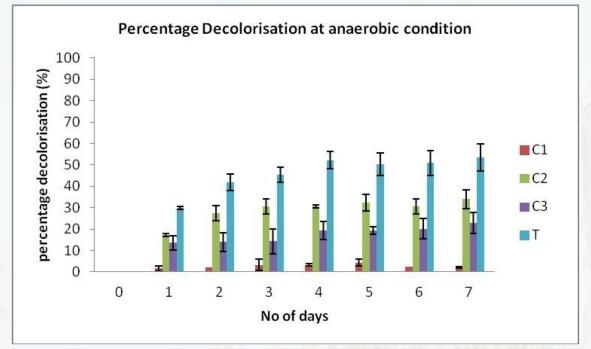
- 1. To determine the boundaries of process parameters of the proposed treatment methodology
- 2. To design and optimize a lab scale textile industry wastewater treatment system to decolourize azo dyes and remove BOD, COD and other contaminants using vetiver and microbial consortia
- 3. To evaluate the synergy between the bacteria and roots of vetiver in treating textile industry wastewater
- 4. To assess the feasibility of the above system for large scale wastewater treatment

Methodology - Trials

- Greenhouse studies with synthetic wastewater and single azo dye – methyl red
- Treatment of textile dye effluent
- Retention time optimization during the treatment of textile dye effluent

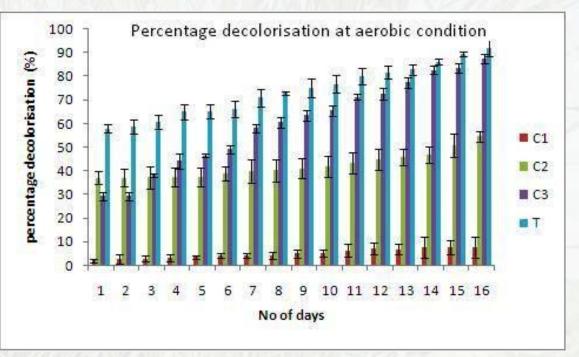
Greenhouse studies with synthetic wastewater and single azo dye – methyl red




Treatment	Description				
C ₁	Methyl red alone				
C ₂	Methyl red treated with microbial consortium				
C ₃	Methyl red treated with vetiver in Hoagland solution (0.25X)				
Т	Methyl red treated with both vetiver-microbe system in 0.25X Hoagland solution				

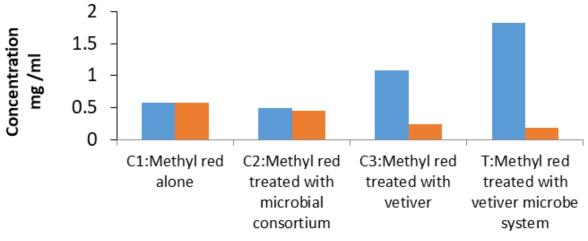
Greenhouse studies with synthetic wastewater and single azo dye – methyl red

• Treatment volume: 10 L



C1: Methyl red alone; C2: Methyl red treated with microbial consortium; C3: Methyl red treated with vetiver in Hoagland solution (0.25X); T: Methyl red treated with both vetiver-microbe system in 0.25X Hoagland solution

7 days of anaerobic treatment followed by aerated treatment for 16 days till the decolourization rate stabilized



Roots before and after treatment

TAA concentration

Treatment methodology

Anaerobic treated

Aerobic treated

Formation of Aromatic amines during anaerobic treatment and their removal during aerobic conditions

S.No	m/z of metabolite	Retention	Name of metabolite
		time (min)	
1	291.28	25.37	Methyl red
2	137.98	17.73	2-aminobenzoic acid (Anaerobic)
3	136	19.67	N, N'-dimethyl-p-phenylenediamine (Anaerobic)
4	123	16.23	Nitrobenzene (Aerobic)
5	122	15.75	Benzoic acid (Aerobic)

Zebrafish embryo development in treated water – 1X

	Fish water (Positive control)	Methyl red (40 mg/L) (negative control)	C1 WW with methyl red alone (1X concentration)	C2 WW with methyred and microbial consortia (1X	C3 WW with methyl red and vetiver (1X concentration)	T WW with methyl red + Vetiver + microbial consortia (1X concentration)
24 hpf				concentration)	60	
48 hpf						
72 hpf						

Zebrafish embryo development in treated water – 0.1X

:	Fish water (Positive control)	Methyl red Concentration (negative control)	C1 WW with methyl red alone (0.1 X) concentration	C2 WW with methyl red and microbial consortia (0.1 X) concentration	C3 WW with methyl red and vetiver (0.1 X) concentration	T WW with methyl red and Vetiver + microbial consortia (0.1 X) concentration
24 hpf			0			
48 hpf		C.				Contraction of the second seco

16-07-2019

Zebrafish embryo development in treated water – 0.01X

	Fish water (Positive control)	Methyl red (40 mg/L) (negative control)	C1 WW with methyl red alone (0.01 X) concentration	C2 WW with methyl red and microbial consortia (0.01 X) concentration	C3 WW with methyl red and vetiver (0.01 X) concentration	T WW with methyl red and Vetiver + microbial consortia (0.01 X) concentration
24 hpf				B	0	000
48 hpf						
72 hpf	2019					15

Lethality and Malformations in developing embryos

- Lethality endpoints coagulation of the embryo
- Teratogenicity endpoints malformation of the head, tail, heart, scoliosis, and growth retardation

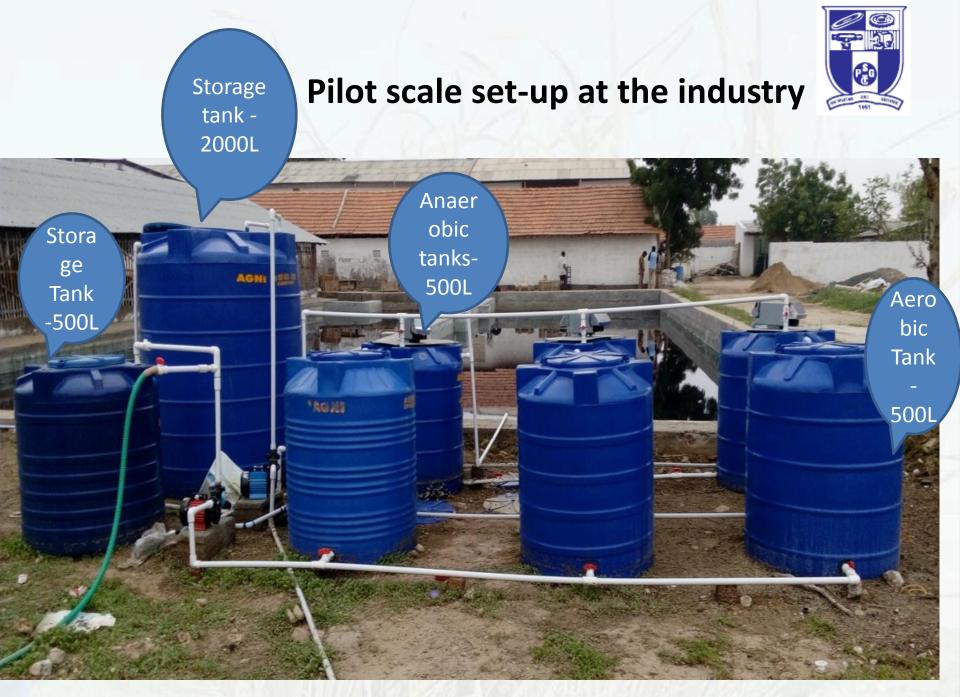
Survival percentage of embryos at time intervals of 24, 48 and 72 hour of post									
fertilization									
hpf	PC (Fish	NC (Methyl		Survival per	centage				
	water)	red)	C1	C2	C3	Т			
24	100	0	16.67	33.3	33.33	50			
48	100	0	16.67	33.33	33.33	50			
72	100	0	16.67	33.33	33.33	50			
Malformat	ion percenta	ge of embryos	at time int	ervals of 24	, 48 and 72	hour of			
		post fe	rtilization						
24	0	100	66.67	55.56	33.33	0			
48	0	100	71.4	50	50	9.5			
72	0	100	77.77	50	27.28	3.7			

C1: Methyl red alone; C2: Methyl red treated with microbial consortium; C3: Methyl red treated with vetiver in Hoagland solution (0.25X); T: Methyl red treated with both vetiver-microbe system in 0.25X Hoagland solution

Total Aromatic Amines Vs Toxicity

	TAA	24 hpf			48 hpf		72 hpf			
	mg/mL	LC ₅₀	EC ₅₀	TI	LC ₅₀	EC ₅₀	TI	LC ₅₀	EC ₅₀	TI
C1	0.256	0.0274	0.0136	2.02 2	0.0274	0.0256	1.067	0.0274	0.0136	2.022
C2	0.102	0.004	0.004	1	0.0043	0.0043	1	0.0043	0.0039	1.096
C3	0.016	0.0013	0.0013	1	0.0013	0.0031	0.405	0.0013	0.0013	1
т	0.008	0.0028	0	0	0.0028	0.0029	0.96	0.0028	0.0033	0.904
MR	1.532	0.527	0.164	3.2	0.527	0.167	3.15	0.527	0.186	2.8

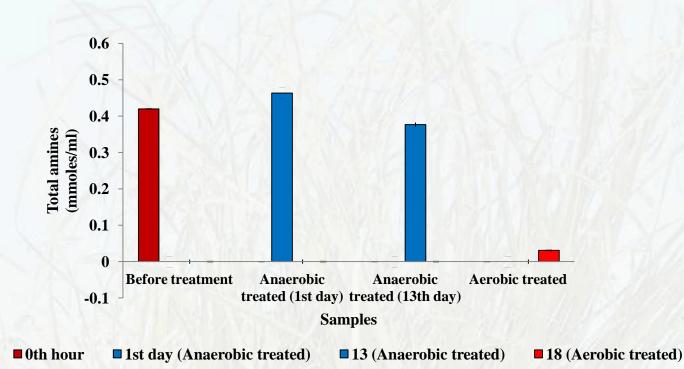
C1: Methyl red alone; C2: Methyl red treated with microbial consortium; C3: Methyl red treated with vetiver in Hoagland solution (0.25X); T: Methyl red treated with both vetiver-microbe system in 0.25X Hoagland solution


Wastewater collection tanks in the Industry

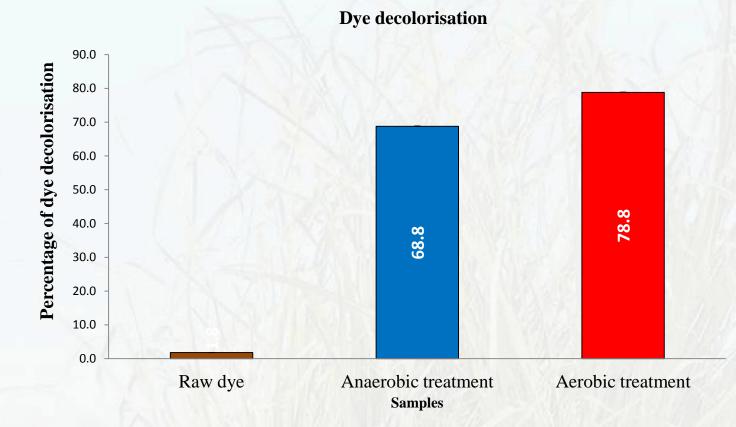
Wastewater Sample characteristics

0 7

Sample from individual Process	Temp °C	рН	EC (μS)	TDS (mg/L)	TSS (mg/L)	BOD = DO ₀ - DO ₅ (mg/L)	COD (mg/L)
Acetic bath	45	3.32	3440	2190	4460	0.34	6000
Soap Wash	70	4.85	448	285.33	2564.67	2.11	5600
Acetic killer	45	4.67	1321	858.33	4891.67	3.72	4400
Soap out	90	3.82	1383.67	900.67	1899.33	3.24	2000
Dyes out	60	10.89	35330	22830	11720	2.37	8400
Peroxide out	90	11.39	2770	1790	7510	-	4000
Final wash	30	5.38	611.67	242	758	1.06	3600
16-07-2019							20


Vetiver used in the treatment

Total Amines – Sequential treatment of raw effluent from the industry


Total amines

Decolorization and formation of aromatic amines at the end of 13 days of anaerobic treatment which were removed by 6 days of aerobic treatment

HRT Optimization

Dye decolourized maximum in anaerobic treatment by 4 hours followed by further decolourization in aerobic treatment

GC-MS data of textile dye effluent

Sample	m/	RT(min)	Dye and its metabolites	Type of
	z			compounds
				present
Wastewat	168	17.12	Benzenamine,4-methoxy-2-nitro	Aromatic amines
er	198	18.83	Azoxybenzene	Azo compound
	212	21.33	Diazene, (4-methoxyphenyl)phenyl-,(Z)-	Azo compound
	286	20.52	Diazene, bis(4-ethoxyphenyl)-, 1-oxide	Azo compound
	223	22.02	Monocrotophos	Toxic compound
Anaerobic	135	17.12	Benzenamine, 2,4,5-trimethyl	Aromatic amines
treatment	107	18.83	2-methyl-1-aminobenzene	Aromatic amines
	168	19.05	Benzenamine,4-methoxy-2-nitro	Aromatic amines
	121	20.53	Benzenamine,2,4-dimethyl-	Aromatic amines
	226	21.38	Benzenamine, 4,4', methylenebis [2-methyl	Aromatic amines
Aerobic	228	17.17	Methyl tridecanoate	Aliphatic
treatment	236	18.85	7,11-hexadecadienal	Aliphatic
	238	19.87	E-9,Hexadecenal	Aliphatic
	254	20.67	9-hexadecanoic acid	Aliphatic
	262	22.15	1,3,12-Nonadecatriene	Aliphatic

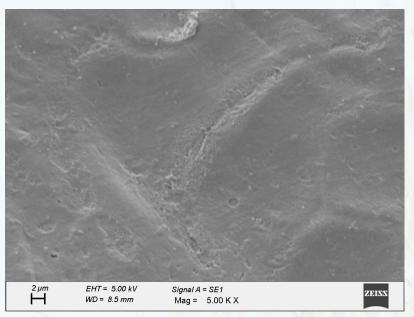
Survival percentage of embryos at time intervals of 24, 48 and 72th hour of post fertilization

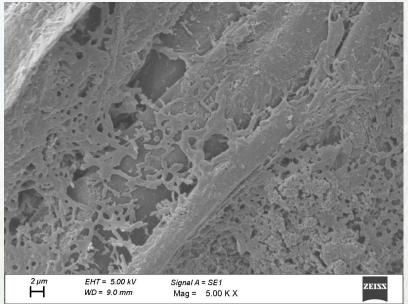
Samples	Survival percentage					
	24 hpf	48 hpf	72 hpf			
Positive control	91.67	91.67	91.67			
Negative control	75	75	50			
Anaerobic treated	91.67	88.89	69.44			
Aerobic treated	100	97.22	83.33			

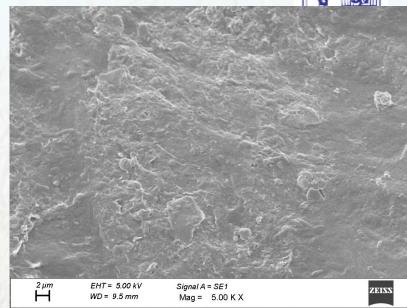
Malformation percentage of embryos at time intervals of 24, 48 and 72th hour of post fertilization

Samples	% Malformation in surviving embryos					
	24 hpf	48 hpf	72 hpf			
Positive control	0	0	0			
Negative control	66.67	66.67	50			
Anaerobic treated	30.71	37.88	43.98			
Aerobic treated	16.67	19.70	13.33			

Teratogenecity index




Samples	72 hpf		
	LC ₅₀	EC ₅₀	TI
Raw dye	2.531	2.531	1
Anaerobic treated samples	2.939	0.5635	5.215
Aerobic treated samples	0.0059	4.889	0.00121
Fish water	0.0909	11	0.00826


SEM analysis of plant roots

b

(a) bare vetiver root surface (b) morphological changes when treated with methyl red dye alone c) bacterial attachment onto root surface when treated under synergistic plant-microbe treatment system

С

Conclusion

- Decolourization mainly during the anaerobic treatment
- Presence of tolerant plants help in reducing the concentration of toxic compounds in water due to adsorption on to the surface of the roots

Conclusion

- Microaerophilic conditions in the root zones along with the biofilm formed on them involved in aerobic degradation of aromatic amines formed
- Sequential treatment was effective in reducing the toxicity of the treated water.

Limitations

 Total Dissolved Solids are not brought down below the CPCB standards (2100 mg/L)

 Time duration – 4 h for decolourization and more than 4 days for complete degradation

Translation and industry ready treatment

- The main constraint time and TDS
- Reactor design optimization
- Integration with other processes like photocatalysis we have undertaken this as part of the Newton – Bhabha Funded project
 - We are currently addressing constraints in this

Defluoridation

- Developed a composite capable of reducing the fluoride levels in groundwater
 - Patent applied
 - Technology transferred to industry

PSGTECH - CEAS

- PSG Tech Centre for Environmental Analyses & Solutions
- An initiative to address problems faced by the industry especially in terms of
 - Waste and wastewater analyses
 - testing of treated effluent quality and compliance with the norms
 - Troubleshooting and process parameter optimization

Acknowledgements

- DBT for support and funding for textile industry wastewater project
- DST for support for the defluoridation project
- RAE-Newton Bhabha Fund for the photocatalysis project
- PSG College of Technology for infrastructure and administrative support.

THANK YOU!